PHESTE(O)/PECHIL

Group - A (Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following:

i) The degree of the polynomial $(x^2+x-2)/(x-1)$ is

a) 0

√b) 1

c) 2

d) 3

ii) If G be a group and $a,b \in G$. Then $(a^{-1}b)^{-1}$ is equal to

- a) ab^{-1}
- √b) $b^{-1}a$

c) $a^{-1}b^{-1}$

d) b-1a-1

iii) $\frac{\partial}{\partial x}(x^y) =$

a) 1

b) yxy

c) $x^y \log x$

✓d) yx^{y-1}

iv) If $P = \{2, 4, 6, 7, 8, 9\}$, $Q = \{1, 2, 6, 9\}$ then $P \cap Q$ is

- a) {1, 2, 6}
- \checkmark b) $\{2, 6, 9\}$
- c) {1, 6, 9}
- d) $\{4, 6, 9\}$

v) The value of $\lim_{x\to 3} \frac{x^3-3^3}{x-3}$ is

- a) 12
- b) 12

√c) 27

d) - 27

vi) If A be a matrix whose inverse exists then which of the following is not true?

a) $(A^T)^{-1} = (A^{-1})^T$

 \checkmark b) $A^{-1} = (\det(A))^{-1}$

c) $(A^2)^{-1} = (A^{-1})^2$

d) none of these

- vii) The equation $x^4 + 2x^2 7x 5 = 0$ has
 - a) one real roots and three complex roots
 - c) two real roots and two complex roots
- b) one complex roots and three real roots
- d) four real roots
- viii) Cardan's method is used for solving equation of degree
 - a) 2

√b) 3

c) 4

- d) none of these
- ix) If α , β , γ be the roots of $x^3 3x^2 + 6x 2 = 0$, then $\sum \alpha \beta$ is
 - a) 3

√b) 6

c) 2

d) none of these

- x) $f(x, y) = \sqrt{x} + \sqrt{y}$ is a function of degree
 - \sqrt{a}) $\frac{1}{2}$

c) 0

- xi) The equation $r = 3\sin\theta + 4\cos\theta$ represents
 - a) a parabola
- b) an ellipse
- c) a straight line
- √d) a circle

- xii) The inverse of the matrix $\begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix}$ is
 - a) $\begin{bmatrix} 2 & -3 \\ 4 & 6 \end{bmatrix}$ b) $\begin{bmatrix} 1 & 2 \\ -\frac{3}{2} & 3 \end{bmatrix}$
- c) $\begin{bmatrix} -2 & 4 \\ -3 & 6 \end{bmatrix}$
- √d) does not exist

Group - B (Short Answer Type Questions)

2. Prove that the set of real numbers of the form $a+b\sqrt{2}$ where a and b are rational numbers, forms a field under addition and multiplication.

See Topic: BINARY COMPOSITION, Short Answer Type Question No. 5.

3. Solve the equation $x^3 - 9x^2 + 14x + 24 = 0$, two of whose roots are in the ratio 3:2.

See Topic: POLYNOMIAL, Short Answer Type Question No. 16.

4. Prove that, any square matrix can be expressed assume of a symmetric matrix and a skew symmetric matrix.

See Topic: MATRICES, Short Answer Type Question No. 10.

5 if
$$u = \tan^{-1}\left(\frac{x+y}{\sqrt{x+\sqrt{y}}}\right)$$
, then show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{1}{4}\sin 2u$.

See Topic: FUNCTION OF SEVERAL VARIABLES, Long Answer Type Question No. 3.

6. A function f(x) is defined as follows

$$f(x) = 1 + x \text{ when } x \le 2.$$

= 5-x when x > 2

show that f(x) is continuous at x = 2 but f(2) does not exist.

See Topic: LIMIT, CONTINUITY & DIFFERENTIABILITY, Short Answer Type Question No. 10.

Group - C (Long Answer Type Questions)

- 7. a) State Descart's rule of sign. Using this rule find the nature of the roots of the equation $x^4 - 7x^3 + 21x^2 - 9x + 21 = 0$.
- b) Solve the following system of linear equations by Cramer's rule

$$x-y+2z=1$$
$$x+y+z=2$$

$$2x-y+z=5.$$

- c) If by a transformation of one rectangular axis to another with same origin the expression ax + bychanges to a'x' + b'y'. Prove that $a^2 + b^2 = a'^2 + b'^2$.
- a) See Topic: POLYNOMIAL, Long Answer Type Question No. 10.
- b) See Topic: MATRICES, Long Answer Type Question No. 12.
- c) See Topic: TRANSFORMATION OF CO-ORDINATES, Long Answer Type Question No. 6.
- 8. a) Show that the equation $20x^2 + 15xy + 9x + 3y + 1 = 0$ represents a pair of intersecting straight lines which are equidistant from the origin.
- b) Show that $\cos x > 1 \frac{x^2}{2}$ if $0 < x < \frac{\pi}{2}$.
- c) If α , β , γ be the roots of the equation $x^3 px^2 + qx r = 0$, then find the value of $\sum \frac{1}{\alpha}$.
- a) See Topic: GENERAL EQUATION OF SECOND DEGREE, Long Answer Type Question No. 6.
- b) See Topic: MISCELLANEOUS, Short Answer Type Question No. 5.
- c) See Topic: POLYNOMIAL, Short Answer Type Question No. 17.

POPULAR PUBLICATIONS

- 9. a) If $A = \{a, b, c, d, e\}$, $B = \{c, a, e, g\}$ and $C = \{b, e, f, g\}$, then show that $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$.
- b) Reduce the following equation to the canonical form and determine the nature of the conic represented by it $x^2-4xy+4y^2-12x-6y-39=0$
- c) Evaluate $\lim_{x \to 1} \left(\frac{x}{x-1} \frac{1}{\log x} \right)$.
- a) See Topic: SET THEORY, Short Answer Type Question No. 5.
- b) See Topic: GENERAL EQUATION OF SECOND DEGREE, Short Answer Type Question No. 1.
- c) See Topic: LIMIT, CONTINUITY & DIFFERENTIABILITY, Short Answer Type Question No. 11.
- 10. a) Evaluate $\int \frac{dx}{(1+x)\sqrt{1-x^2}}$
- b) If PSQ be a focal chord of a conic with focus S and semi-latus rectum I, then prove that $\frac{1}{SP} + \frac{1}{SO} = \frac{2}{I}$
- c) If $A-2B = \begin{bmatrix} 0 & 6 & 26 \\ 6 & -9 & 12 \\ 2 & 9 & -10 \end{bmatrix}$ and $2A+B = \begin{bmatrix} 10 & -3 & 4 \\ 12 & -3 & 4 \\ 4 & 3 & 0 \end{bmatrix}$, find A and B.
- a) See Topic: DEFINITE INTEGRALS, Short Answer Type Question No. 9.
- b) See Topic: POLAR EQUATIONS, Long Answer Type Question No. 1(a).
- c) See Topic: MATRICES, Long Answer Type Question No. 1.
- 11. a) If G be a group such that $(ab)^2 = a^2b^2 \ \forall a,b \in G$, show that the group G is abelian.
- b) Show that $\int_{0}^{1} \frac{\log(1+x)}{1+x^2} dx = \frac{\pi}{8} \log 2$.
- c) If $y = e^{-x} \sin x$, then show that $y_4 + 4y = 0$.
- a) See Topic: BINARY COMPOSITION, Short Answer Type Question No. 6.
- b) See Topic: DEFINITE INTEGRALS, Short Answer Type Question No. 10.
- c) See Topic: SUCCESSIVE DIFFERENTIATION, Short Answer Type Question No. 9.